

Lithium Ion Fast-Charge IC

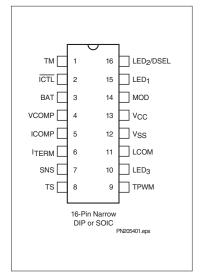
Features

- ➤ Safe charge of Lithium Ion battery packs
- ➤ Voltage-regulated currentlimited charging
- ➤ Fast charge terminated by selectable minimum current; safety backup termination on maximum time
- Charging continuously qualified by temperature and voltage limits
- ➤ Pulse-width modulation control ideal for high-efficiency switch-mode power conversion
- ➤ Direct LED control outputs display charge status and fault conditions

General Description

The bq2054 Lithium Ion Fast-Charge IC is designed to optimize charging of lithium ion (Li-Ion) chemistry batteries. A flexible pulse-width modulation regulator allows the bq2054 to control voltage and current during charging. The regulator frequency is set by an external capacitor for design flexibility. The switch-mode design keeps power dissipation to a minimum.

The bq2054 measures battery temperature using an external thermistor for charge qualification. Charging begins when power is applied or on battery insertion.


For safety, the bq2054 inhibits charging until the battery voltage and temperature are within con-

figured limits. If the battery voltage is less than the low-voltage threshold, the bq2054 provides low-current conditioning of the battery.

A constant current-charging phase replenishes up to 70% of the charge capacity, and a voltage-regulated phase returns the battery to full. The charge cycle terminates when the charging current falls below a user-selectable current limit. For safety, charging terminates after maximum time and is suspended if the temperature is outside the preconfigured limits.

The bq2054 provides status indications of all charger states and faults for accurate determination of the battery and charge system conditions.

Pin Connections

Pin Names

TM	Time-out programming	TPWM	Regulator timebase input
	input	LED ₃	Charge status output 3
ICTL	Inrush current control output	LCOM	Common LED output
BAT	Battery voltage input	V_{SS}	System ground
VCOMP	Voltage loop comp input	V_{CC}	5.0V±10% power
ICOMP	Current loop comp input	MOD	Modulation control output
I_{TERM}	Minimum current	LED ₁	Charge status output 1
	termination select input	LED ₂ /	Charge status output 2/
SNS	Sense resistor input	DSEL	Display select input
TS	Temperature sense input		

6/99 H

Pin Descriptions

TM Time-out programming input

This input sets the maximum charge time. The resistor and capacitor values are determined using Equation 5. Figure 7 shows the resistor/capacitor connection.

ICTL Inrush current control output

ICTL is driven low during the fault or charge-complete states of the chip. It is used to disconnect the capacitor across the battery pack terminals, preventing inrush currents from tripping overcurrent protection features in the pack when a new battery is inserted.

BAT Battery voltage input

BAT is the battery voltage sense input. This potential is generally developed using a high-impedance resistor divider network connected between the positive and the negative terminals of the battery. See Figure 4 and Equation 1.

VCOMP Voltage loop compensation input

This input uses an external R-C network for voltage loop stability.

I_{TERM} Minimum current termination select

This three-state input is used to set I_{MIN} for fast charge termination. See Table 2.

ICOMP Current loop compensation input

This input uses an external R-C network for current loop stability.

SNS Charging current sense input

Battery current is sensed via the voltage developed on this pin by an external sense resistor, $R_{\rm SNS}$, connected in series with the negative terminal of the battery pack. See Equation 6.

TS Temperature sense input

This input is used to monitor battery temperature. An external resistor divider network sets the lower and upper temperature thresholds. See Figure 6 and Equations 3 and 4.

TPWM Regulation timebase input

This input uses an external timing capacitor to ground to set the pulse-width modulation (PWM) frequency. See Equation 7.

LCOM Common LED output

Common output for LED₁₋₃. This output is in a high-impedance state during initialization to read programming input on DEFI

MOD Current-switching control output

MOD is a pulse-width modulated push/pull output that is used to control the charging current to the battery. MOD switches high to enable current flow and low to inhibit current flow.

$\begin{array}{ccc} LED_1- & Charger\ display\ status\ 1-3\ outputs\ LED_3 \end{array}$

These charger status output drivers are for the direct drive of the LED display. Display modes are shown in Table 1. These outputs are tri-stated during initialization so that DSEL can be read.

DSEL Display select input

This three-level input controls the LED₁₋₃ charge display modes. See Table 1.

V_{CC} V_{CC} supply

 $5.0V, \pm 10\%$ power

Vss Ground

Charge Algorithm

The bq2054 uses a two-phase fast charge algorithm. In phase 1, the bq2054 regulates constant current ($I_{SNS}=I_{MAX}$) until V_{CELL} (= V_{BAT} - V_{SNS}) rises to V_{REG} . The bq2054 then transitions to phase 2 and regulates constant voltage ($V_{CELL}=V_{REG}$) until the charging current falls below the programmed I_{MIN} threshold. The charging current must remain below I_{MIN} for 120 \pm 40ms before a valid fast charge termination is detected. Fast charge then terminates, and the bq2054 enters the Charge Complete state. See Figures 1 and 2.

Charge Qualification

The bq2054 starts a charge cycle when power is applied while a battery is present or when a battery is inserted. Figure 2 shows the state diagram for pre-charge qualification and temperature monitoring. The bq2054 first checks that the battery temperature is within the allowed, user-configurable range. If the temperature is out of range, the bq2054 enters the Charge Pending state and waits until the battery temperature is within the allowed range. Charge Pending is enunciated by LED3 flashing.

Thermal monitoring continues throughout the charge cycle, and the bq2054 enters the Charge Pending state when the temperature out of range. (There is one exception; if the bq2054 is in the Fault state—see below—the out-of-range temperature is not recognized until the bq2054 leaves the Fault state.) All timers are suspended (but not reset) while the bq2054 is in Charge Pending. When the temperature comes back into range, the bq2054 returns to the point in the charge cycle where the out-of-range temperature was detected.

When the temperature is valid, the bq2054 then regulates current to I_{COND} (= $I_{MAX}/5$). After an initial holdoff period t_{HO} (which prevents the chip from reacting to transient voltage spikes that may occur when charge current is first applied), the chip begins monitoring V_{CELL} . If V_{CELL} does not rise to at least V_{MIN} before the expiration of time-out limit t_{MTO} (e.g. the cell has failed short), the bq2054 enters the Fault state. If V_{MIN} is achieved before expiration of the time limit, the chip begins fast charging.

Once in the Fault state, the bq2054 waits until $V_{\rm CC}$ is cycled or a new battery insertion is detected. It then starts a new charge cycle and begins the qualification process again.

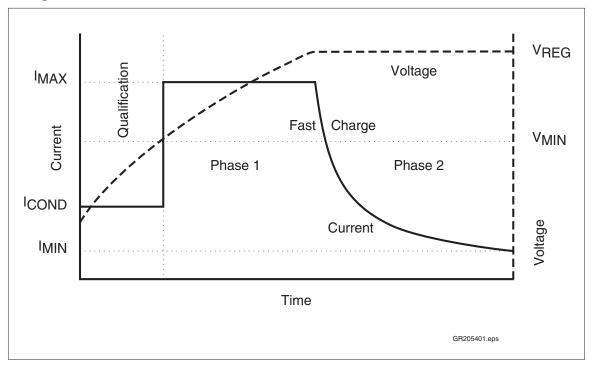


Figure 1. bq2054 Charge Algorithm

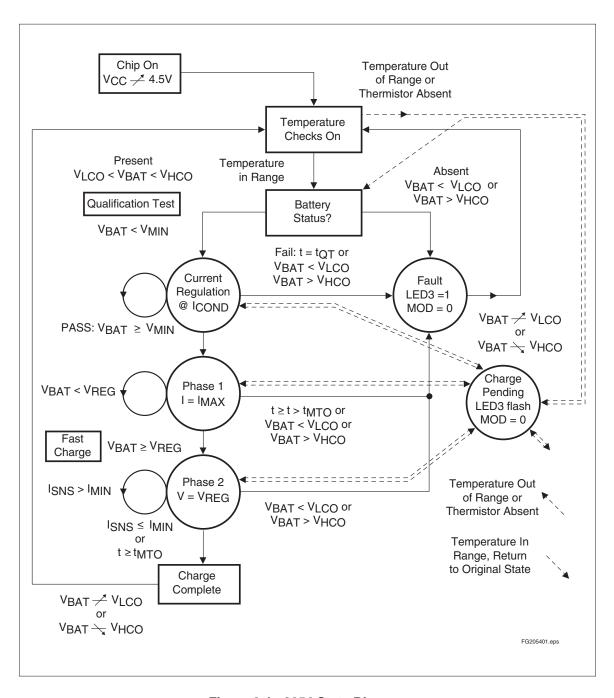


Figure 2. bq2054 State Diagram

Charge Status Display

Charge status is enunciated by the LED driver outputs LED₁–LED₃. Three display modes are available in the bq2054; the user selects a display mode by configuring pin DSEL. Table 1 shows the three display modes.

The bq2054 does not distinguish between an overvoltage fault and a "battery absent" condition. The bq2054 enters the Fault state, enunciated by turning on LED3, whenever the battery is absent. The bq2054, therefore, gives an indication that the charger is on even when no battery is in place to be charged.

Configuring the Display Mode and I_{MIN}

DSEL/LED $_2$ is a bi-directional pin with two functions; it is an LED driver pin as an output and a programming pin as an input. The selection of pull-up, pull-down, or no pull resistor programs the display mode on DSEL per Table 1. The bq2054 latches the programming data sensed on the DSEL input when any one of the following three events occurs:

- 1. V_{CC} rises to a valid level.
- 2. The bq2054 leaves the Fault state.
- 3. The bq2054 detects battery insertion.

The LEDs go blank for approximately 750ms (typical) while new programming data is latched.

Table 1. bq2054 Display Output Summary

Mode	Charge Action State	LED ₁	LED ₂	LED ₃
	Battery absent or over-voltage fault	Low	Low	High
	Pre-charge qualification	Flash	Low	Low
DSEL = 0	Fast charging	High	Low	Low
(Mode 1)	Charge complete	Low	High	Low
	Charge pending (temperature out of range)	X	X	Flash
	Charging fault	X	X	High
	Battery absent or over-voltage fault	Low	Low	High
	Pre-charge qualification	High	High	Low
DSEL = 1	Fast charge	Low	High	Low
(Mode 2)	Charge complete	High	Low	Low
	Charge pending (temperature out of range)	X	X	Flash
	Charging fault	X	X	High
	Battery absent or over-voltage fault	Low	Low	High
	Pre-charge qualification	Flash	Flash	Low
	Fast charge: current regulation	Low	High	Low
DSEL = Float (Mode 3)	Fast charge: voltage regulation	High	High	Low
(======================================	Charge complete	High	Low	Low
	Charge pending (temperature out of range)	X	X	Flash
	Charging fault	X	X	High

Note: $1 = V_{CC}$; $0 = V_{SS}$; X = LED state when fault occurred; Flash = $\frac{1}{6}$ sec. low, $\frac{1}{6}$ sec high.

Fast charge terminates when the charging current drops below a minimum current threshold programmed by the value of I_{TERM} (see Table 2) and remains below that level for $120\pm40 ms.$

Table 2. I_{MIN} Termination Thresholds

I _{TERM}	I _{MIN}
0	I _{MAX} /10
1	I _{MAX} /20
Float	I _{MAX} /30

Figure 3 shows the bq2054 configured for display mode 2 and $I_{MIN} = I_{MAX}/10$.

Voltage and Current Monitoring

The bq2054 monitors battery pack voltage at the BAT pin. The user must implement a voltage divider between the positive and negative terminals of the battery pack to present a scaled battery pack voltage to the BAT pin. The bq2054 also uses the voltage across a sense resistor $(R_{\rm SNS})$ between the negative terminal of the battery pack and ground to monitor the current into the pack. See Figure 4 for the configuration of this network.

The resistor values are calculated from the following:

Equation 1

$$\frac{RB1}{RB2} = \frac{N*V_{\text{REG}}}{2.05V} - 1$$

where:

- N = Number of cells in series
- V_{REG} = Desired fast-charging voltage per cell

These parameters are typically specified by the battery manufacturer. The total resistance presented across the battery pack by RB1 + RB2 should be between $150k\Omega$ and $1M\Omega$. The minimum value ensures that the divider network does not drain the battery excessively when the power source is disconnected. Exceeding the maximum value increases the noise susceptibility of the BAT pin.

The current sense resistor, $R_{\rm SNS}$ (see Figure 5), determines the fast charge current. The value of $R_{\rm SNS}$ is given by the following:

Equation 2

$$I_{\rm MAX} = \frac{0.250 \, V}{R_{\rm SNS}}$$

where:

■ I_{MAX} = Desired maximum charge current

Hold-Off Period

Both V_{HCO} and I_{MIN} terminations are ignored during the first 1.33 \pm 0.19 seconds of both the Charge Qualification and Fast Charge phases. This condition prevents premature termination due to voltage spikes that may occur when charge is first applied.

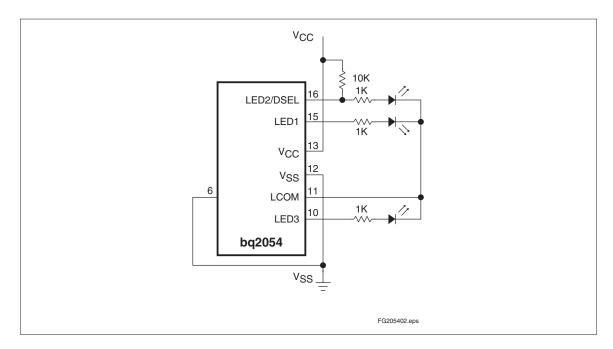


Figure 3. Configured Display Mode/IMIN Threshold

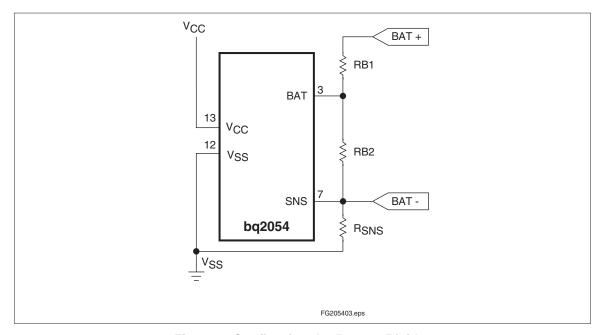


Figure 4. Configuring the Battery Divider

Battery Insertion and Removal

 $V_{\rm CELL}$ is interpreted by the bq2054 to detect the presence or absence of a battery. The bq2054 determines that a battery is present when $V_{\rm CELL}$ is between the High-Voltage Cutoff ($V_{\rm HCO}=V_{\rm REG}+0.25V$) and the Low-Voltage Cutoff ($V_{\rm LCO}=0.8V$). When $V_{\rm CELL}$ is outside this range, the bq2054 determines that no battery is present and transitions to the Fault state. Transitions into and out of the range between $V_{\rm LCO}$ and $V_{\rm HCO}$ are treated as battery insertions and removals, respectively. The $V_{\rm HCO}$ limit also implicitly serves as an overvoltage charge termination.

Inrush Current Control

Whenever the bq2054 is in the fault or charge-complete state, the \overline{ICTL} output is driven low. This output can be used to disconnect the capacitor usually present in the charger across the positive and negative battery terminals, preventing the cap from supplying large inrush currents to a newly inserted battery. Such inrush currents may trip the overcurrent protection circuitry usually present in Li-Ion battery packs.

VCCRT1 bq2054 13 NTC VCC Thermistor 12 Vss SNS BAT -8 TS RSNS Vss

Figure 5. Configuring Temperature Sensing

Temperature Monitoring

The bq2054 monitors temperature by examining the voltage presented between the TS and SNS pins by a resistor network that includes a Negative Temperature Coefficient (NTC) thermistor. Resistance variations around that value are interpreted as being proportional to the battery temperature (see Figure 6).

The temperature thresholds used by the bq2054 and their corresponding TS pin voltage are:

- TCO (Temperature Cutoff): Higher limit of the temperature range in which charging is allowed. V_{TCO} = 0.4 * V_{CC}
- HTF (High-Temperature Fault): Threshold to which temperature must drop after temperature cutoff is exceeded before charging can begin again. $V_{HTF} = 0.44*V_{CC}$
- LTF (Low-Temperature Fault): Lower limit of the temperature range in which charging is allowed. $V_{\rm LTF} = 0.6 * V_{\rm CC}$

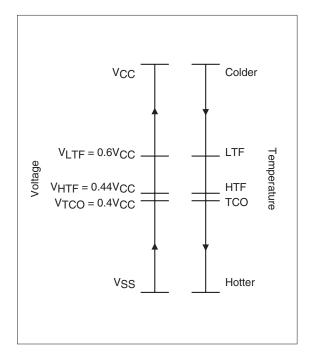


Figure 6. Voltage Equivalent of Temperature

bq2054

A resistor-divider network can be implemented that presents the defined voltage levels to the TS pin at the desired temperatures (see Figure 6).

The equations for determining RT1 and RT2 are:

Equation 3

$$0.6 * V_{\rm CC} = \frac{(V_{\rm CC} - 0.250)}{1 + \frac{RT1 * (RT2 + R_{\rm LTF})}{(RT2 * R_{\rm LTF})}}$$

Equation 4

$$0.44 = \frac{1}{1 + \frac{RT1 * (RT2 + R_{\rm HTF})}{(RT2 * R_{\rm HTF})}}$$

where:

- \blacksquare R_{LTF} = thermistor resistance at LTF
- \blacksquare R_{HTF} = thermistor resistance at HTF

TCO is determined by the values of RT1 and RT2. 1% resistors are recommended.

Disabling Temperature Sensing

Temperature sensing can be disabled by placing $10k\Omega$ resistors between TS and SNS and between SNS and $V_{\rm CC}.$

Maximum Time-Out

MTO is programmed from 1 to 24 hours by an R-C network on the TM pin (see Figure 7) per the equation:

Equation 5

$$t_{MTO} = 0.5 * R * C$$

Where R is in $k\Omega$ and C is in $\mu F,\,t_{MTO}$ is in hours. The maximum value for C (0.1 $\!\mu F)$ is typically used.

The MTO timer is reset at the beginning of fast charge and when fast charge transitions from the current regulated to the voltage regulated mode. If MTO expires during the current regulated phase, the bq2054 enters the Fault state and terminates charge. If the MTO timer expires during the voltage regulated phase, fast charging terminates and the bq2054 enters the Charge Complete state.

The MTO timer is suspended (but not reset) during the out-of-range temperature (Charge Pending) state.

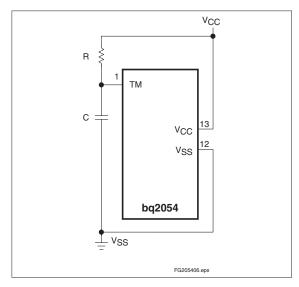


Figure 7. R-C Network for Setting MTO

Charge Regulation

The bq2054 controls charging through pulse-width modulation of the MOD output pin, supporting both constant-current and constant-voltage regulation. Charge current is monitored at the SNS pin, and charge voltage is monitored at the BAT pin. These voltages are compared to an internal reference, and the MOD output modulated to maintain the desired value.

Voltage at the SNS pin is determined by the value of resistor $R_{\rm SNS}$, so nominal regulated current is set by:

Equation 6

$$I_{\rm MAX}=0.250 V/R_{\rm SNS}$$

The switching frequency of the MOD output is determined by an external capacitor (CPWM) between the pin TPWM and ground, per the following:

Equation 7

$$F_{PWM} = 0.1/C_{PWM}$$

Where C is in μF and F is in kHz. A typical switching rate is 100kHz, implying C_{PWM} = 0.001 μF . MOD pulse width is modulated between 0 and 90% of the switching period.

To prevent oscillation in the voltage and current control loops, frequency compensation networks (C or R-C) are typically required on the $V_{\rm COMP}$ and $I_{\rm COMP}$ pins (respectively).

Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V _{CC}	$V_{\rm CC}$ relative to $V_{ m SS}$	-0.3	+7.0	V	
V_{T}	DC voltage applied on any pin excluding $V_{\rm CC}$ relative to $V_{\rm SS}$	-0.3	+7.0	V	
T _{OPR}	Operating ambient temperature	-20	+70	°C	Commercial
T_{STG}	Storage temperature	-55	+125	°C	
T _{SOLDER}	Soldering temperature	-	+260	°C	10 sec. max.

Note:

Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

bq2054

DC Thresholds (TA = TOPR; VCC = 5V \pm 10%)

Symbol	Parameter	Rating	Unit	Tolerance	Notes
**	Internal reference voltage	2.05	V	1%	$T_A = 25$ °C
$ m V_{REF}$	Temperature coefficient	-0.5	mV/°C	10%	
$V_{ m LTF}$	TS maximum threshold	0.6 * V _{CC}	V	±0.03V	Low-temperature fault
V_{HTF}	TS hysteresis threshold	$0.44*V_{\rm CC}$	V	±0.03V	High-temperature fault
V _{TCO}	TS minimum threshold	$0.4*\mathrm{V_{CC}}$	V	±0.03V	Temperature cutoff
V_{HCO}	High cutoff voltage	2.3V	V	1%	
$V_{ m MIN}$	Under-voltage threshold at BAT	0.2 * V _{CC}	V	±0.03V	
$V_{\rm LCO}$	Low cutoff voltage	0.8	V	±0.03V	
	G	0.250	V	10%	I _{MAX}
$ m V_{SNS}$	Current sense at SNS	0.050	V	10%	I_{COND}

Recommended DC Operating Conditions (TA = TOPR)

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
$V_{\rm CC}$	Supply voltage	4.5	5.0	5.5	V	
V_{TEMP}	Temperature sense voltage	0	-	$V_{\rm CC}$	V	V _{TS} - V _{SNS}
V_{CELL}	Per cell battery voltage input	0	-	$V_{\rm CC}$	V	$ m V_{BAT}$ - $ m V_{SNS}$
I_{CC}	Supply current	-	2	4	mA	Outputs unloaded
Ten	DSEL tri-state open detection	-2	-	2	μΑ	Note 2
$ m I_{IZ}$	I _{TERM} tri-state open detection	-2		2	μΑ	
V_{IH}	Logic input high	V _{CC} -0.3	-	-	V	DSEL, I _{TERM}
$ m V_{IL}$	Logic input low	-	-	$V_{\rm SS}$ +0.3	V	DSEL, I _{TERM}
$ m V_{OH}$	$\mathrm{LED}_{1\text{-}3},\overline{\mathrm{ICTL}},\mathrm{output}\mathrm{high}$	V _{CC} -0.8	-	-	V	$I_{OH} \leq 10 mA$
VOH	MOD output high	V _{CC} -0.8	-	-	V	$I_{OH} \leq 10 mA$
	LED ₁₋₃ , $\overline{\text{ICTL}}$, output low	-	-	V _{SS} +0.8V	V	$I_{OL} \leq 10 mA$
V_{OL}	MOD output low	-	-	V _{SS} +0.8V	V	$I_{OL} \leq 10 mA$
	LCOM output low	-	-	$V_{\rm SS+}0.5$	V	$I_{OL} \leq 30 mA$
Torr	LED_{1-3} , \overline{ICTL} , source	-10	-	-	mA	$V_{\rm OH}$ = $V_{\rm CC}$ -0.5 V
I_{OH}	MOD source	-5.0	-	-	mA	$V_{\mathrm{OH}} = V_{\mathrm{CC}} - 0.5 \mathrm{V}$
	LED_{1-3} , \overline{ICTL} , $sink$	10	-	-	mA	$V_{\rm OL} = V_{\rm SS} + 0.5 V$
I_{OL}	MOD sink	5	-	-	mA	$V_{\rm OL} = V_{\rm SS} + 0.8 V$
	LCOM sink	30	-	-	mA	$V_{\rm OL} = V_{\rm SS} + 0.5 V$
T.,	DSEL logic input low source	-	-	+30	μΑ	V = $V_{\rm SS}$ to $V_{\rm SS}$ + 0.3 V , Note 2
$ m I_{IL}$	I _{TERM} logic input low source	-	-	+70	μΑ	V = $V_{\rm SS}$ to $V_{\rm SS}$ + 0.3 V
T	DSEL logic input high source	-30	-	-	μΑ	V = $V_{\rm CC}$ - 0.3V to $V_{\rm CC}$
$ m I_{IH}$	I _{TERM} logic input high source	-70	-	-	μΑ	V = $V_{\rm CC}$ - $0.3V$ to $V_{\rm CC}$

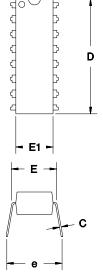
Notes:

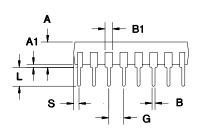
- 1. All voltages relative to $V_{\rm SS}\, {\rm except}$ where noted.
- 2. Conditions during initialization after $V_{\mbox{\footnotesize CC}}$ applied.

bq2054

Impedance

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
R _{BATZ}	BAT pin input impedance	50	-	-	$M\Omega$	
RSNSZ	SNS pin input impedance	50	-	-	${ m M}\Omega$	
R _{TSZ}	TS pin input impedance	50	-	-	$\mathrm{M}\Omega$	
R _{PROG1}	Soft-programmed pull-up or pull-down resistor value (for programming)	-	-	10	kΩ	DSEL
R _{PROG2}	Pull-up or pull-down resistor value	-	-	3	kΩ	I_{TERM}
R _{MTO}	Charge timer resistor	20	-	480	kΩ	

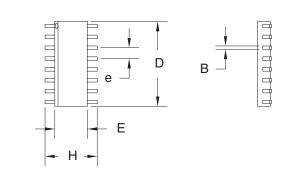

Timing $(T_A = T_{OPR}; V_{CC} = 5V \pm 10\%)$

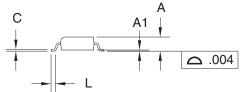

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Notes
t _{MTO}	Charge time-out range	1	-	24	hours	See Figure 7
t_{QT}	Pre-charge qual test time-out period	-	$t_{ m MTO}$	-	-	
$t_{ m HO}$	Termination hold-off period	1.14	-	1.52	sec.	
$t_{\rm IMIN}$	Min. current detect filter period	80		160	msec.	
F_{PWM}	PWM regulator frequency range	-	100		kHz	$C_{PWM} = 0.001 \mu F$ (equation 7)

Capacitance

Symbol	Parameter	Minimum	Typical	Maximum	Unit
C _{MTO}	Charge timer capacitor	-	-	0.1	μF
C _{PWM}	PWM R-C capacitance	-	0.001	-	μF

16-Pin DIP Narrow (PN)





16-Pin PN (0.300" DIP)

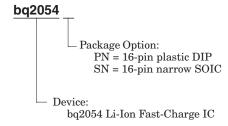
	Inches		Millin	neters	
Dimension	Min.	Max.	Min.	Max.	
A	0.160	0.180	4.06	4.57	
A1	0.015	0.040	0.38	1.02	
В	0.015	0.022	0.38	0.56	
B1	0.055	0.065	1.40	1.65	
С	0.008	0.013	0.20	0.33	
D	0.740	0.770	18.80	19.56	
E	0.300	0.325	7.62	8.26	
E1	0.230	0.280	5.84	7.11	
e	0.300	0.370	7.62	9.40	
G	0.090	0.110	2.29	2.79	
L	0.115	0.150	2.92	3.81	
S	0.020	0.040	0.51	1.02	

16-Pin SOIC Narrow (SN)

16-Pin SN (0.150" SOIC)

	Inches		Millim	neters
Dimension	Min.	Max.	Min.	Max.
A	0.060	0.070	1.52	1.78
A1	0.004	0.010	0.10	0.25
В	0.013	0.020	0.33	0.51
C	0.007	0.010	0.18	0.25
D	0.385	0.400	9.78	10.16
E	0.150	0.160	3.81	4.06
e	0.045	0.055	1.14	1.40
Н	0.225	0.245	5.72	6.22
L	0.015	0.035	0.38	0.89

Data Sheet Revision History


Change No.	Page No.	Description	Nature of Change
1	5, 7, 8, 10	Value Change	Changed V _{SNS} and I _{MAX}
2	5, 10	Value Change	Changed V_{REF}
3	10	Coefficient Addition	Temperature coefficient added
4	5	New state diagram	Diagram inserted
4	1, 2, 8, 12	NC pin replaced with $\overline{\text{ICTL}}$	
4	3, 5, 13	Termination hold-off period added I_{MIN} detect filtering added	
5	11	V_{HCO} Rating changed to 2.3V V_{HCO} Tolerance changed to 1%	Changed values for $V_{\rm HCO}$
6	13	t _{QT} in Timing Specifications	t_{QT} changed from $(0.16*t_{MTO})$ to t_{MTO}
7	5	I _{TERM} in Table 2	Z changes to Float
7	8	Figure 6	RB1 and RB2 changed to RT1 and RT2
8	10	TOPR	Deleted industrial temperature range.

Notes:

Change 3 = April 1996 C changes from Dec. 1995 B. Change 4 = Sept. 1996 D changes from April 1996 C. Change 5 = Nov. 1996 E changes from Sept. 1996 D.

Change 6 = Oct. 1997 F changes from Nov. 1996 E. Change 7 = Oct. 1997 G changes from Oct. 1997 F. Change 8 = June 1999 H changes from Oct. 1997 G.

Ordering Information

i.com 13-Feb-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
BQ2054PN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
BQ2054PNE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
BQ2054SN	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2054SNG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2054SNTR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
BQ2054SNTRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

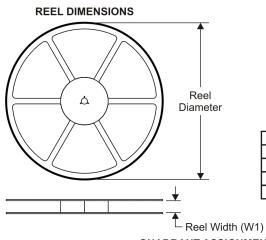
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

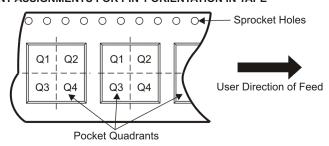
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

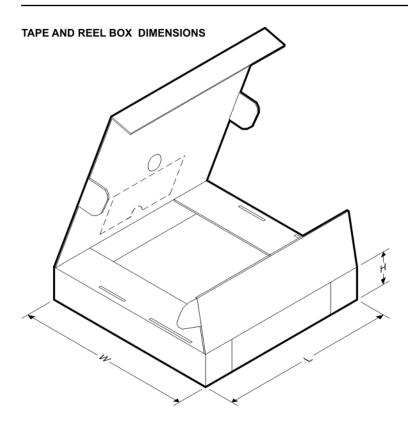
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ2054SNTR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ2054SNTR	SOIC	D	16	2500	346.0	346.0	33.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated